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The Behavior of Quantization Spectra as a Function of

Signal-to-Noise Ratio

M. J. Flanagan 1
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An expression for the spectrum of quantization error in a discrete-time system

whose input is a sinusoid plus white Gaussian noise is derived. This quantization

spectrum consists of two components: a white-noise floor and spurious harmon-
ics. The dithering effect of the input Gaussian noise on both components of the

spectrum is considered. Quantitative results in a discrete Fourier transform (DFT)
example show the behavior of spurious harmonics as a function of the signal-to-

noise ratio (SNR). These results have strong implications for digital reception and

signal analysis systems. At low SNRs, spurious harmonies decay exponentially on
a log-log scale, and the resulting spectrum is white. As the SNR increases, the

spurious harmonics figure prominently in the output spectrum. A useful expression

is given that roughly bounds the magnitude of a spurious harmonic as a function
of the SNR.

I. Introduction

This work was inspired by consideration of a 2-million
channel spectrum analyzer built by the Digital Projects

Group of the Communications Systems Research Sec-

tion [1]. This spectrum analyzer is a prototype of a larger
system that will be used in the sky-survey portion of

the Search for Extraterrestrial Intelligence (SETI) project.

After computer simulations were performed, 8-bit input
quantization was observed to pose the greatest limitation

to the dynamic range of the spectrum analyzer. This is

1The author is also a graduate student in Electrical Engineering at
the California Institute of Technology.

because quantization is a nonlinear process that generates

spurious harmonics in the spectrum of the quantizer out-

put.

Previous work by Bennett [2] considered the spectra of

quantized signals when the system input has "energy uni-
formly distributed throughout a definite frequency band

and with the phases of the components randomly dis-

tributed." Hurd [3] developed an expression for the cor-

relation function of a quantized sine wave plus Gaussian
noise and examined the case where the input noise spec-

trum is rectangular narrow-band and the signal-to-noise
ratio ($NR) is small. Quantization error spectra are most

commonly assumed to be white [4]. This article derives an
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expression for the spectrum of a quantized sine wave plus

white Gaussian noise. An SNR transition region where the
spectrum goes from being filled with spurious harmonics

to white is presented. This transition is due to the dither-

ing effect of the input Gaussian noise. A rule of thumb
is given bounding the size of a spurious harmonic as a

function of the SNR. Implications for digital reception and

signal analysis systems are considered.

II. Power Spectrum of the Quantization Error

Consider the quantizer system in Fig. 1 with input x

and output y. One can write:

y = Q[x] = x - e (1)

where Q[ ] is the quantization operator and e is the quan-

tization error. When Q[] is a uniform mid-tread symmet-

ric quantizer with a staircase input-output relation as in

Fig. 2, e can be expressed as a sawtooth function of x as
in Fig. 3. Assuming an infinite quantizer (or equivalently,

no quantizer saturation), one can write a Fourier series

expansion for e(z) as in [5]:

k=-oo
k#0

Now consider the system in Fig. 4 where the input is

A sin(w0t + ¢) + z(t) and z(t) is zero mean, Gaussian noise
with variance a 2. The continuous-time signal e(t) can be
written as

e(0 =

- [j2rkx t-- • )A (--1)k exp L_ (A sm (wot + ¢) + z (t))j2_r k
k=-oo

k#O

(3)

The autocorrelation function of e(t) is defined as

R,(t,t + r) = E{e(t)e(t + r)} (4)

Returning to Fig. 4, one sees that x[n] = e(nT) is a
discrete-time random process. The autocorrelation func-

tion of x[n] can be expressed as

R_[n, n + k] = E{z[n]x[n + k]}

= E{e(nT)e(nT + kT)} = R,(nT, nT + kT)

(5)

If the phase ¢ of the input sinusoid is a random variable

uniformly distributed between 0 and 2_r, Rr[k] can be com-
puted as

lf02"Rx [k] = _ Rx [n, n + k]d¢ (6)

Leaving the details to Appendix A; one obtains

w +., (_

E S, exp(jnwoTk);
_--00
n odd

k=O

k#0
(7)

where

i iv))S. = -_- --(-1)'exp -_T l)Jn
/=1 1

(8)

and Jn(z) is the nth-order Bessel function. The power

spectrum of the discrete-time random process z[n] is

oo

s(.)= _ _,[_]_'_ (9)
k=-oo
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Finally, the power spectrum can be expressed as

oo

S(w) = NQ + E 2rS,_6((wT- nwoT) mod 2rr)
fl--OO
n odd

(10)

where

A 2 {A2 _-, (-1) ' ( 2r2a2 )

-
n odd

and S, is defined in Eq. (8) (details of this derivation

are left to Appendix A). The NQ term in Eq. (10) rep-

resents a frequency-independent quantization noise floor

(see Appendix A). The infinite sum in Eq. (10) specifies

the phase-averaged magnitude and location of all spurious
harmonics in the frequency domain. Depending on the

value of woT, spurious harmonics can be spread through-
out the frequency domain or lie concentrated at only a few

frequencies. This complicates digital reception of weak

signals in the presence of stronger interferers. While a

strong interferer may be easily identified and filtered out,
tile spurious harmonics generated by a strong interferer

would require more complex filtering techniques. A spec-

trum (taken from a discrete Fourier transform) with spurs

is shown in Fig. 5.

When _r > A,

mediately obvious how the spectrum will appear. For this

reason, an example involving a discrete Fourier transform

(DFT) is presented in the next section.

III. DFT Example

This example provides a quantitative analysis of the

manner in which spurious harmonics are dithered due to
additive white Gaussian noise. In particular, an SNR re-

gion where the magnitude of a spurious harmonic decays
exponentially on a log-log scale is presented. Consider the

DFT of the signal x[n] in Fig. 4. One can write

E{iX[k]12} = N-_I E _ E{x[n]x[r]}e "-''N (II)
n=0 r=0

For the purpose of exposition, the woT product is chosen

to equal r/8, and the value of k is 3N/16. Thus, a case is
analyzed where the infinite number of spurious harmonics

are aliased into only a few frequency bins. In this exam-

ple, the phase is not treated as a random variable as was
done in the previous section. Treating the phase as a con-

stant allows a more general phase-dependent solution to
be obtained.

By observing bin 3N/16, one is examining the spectral

sample that contains the spurious harmonic specified by
an arrow in Fig. 5. The spectrum in Fig. 5 was generated

using the following parameters: A = 0.5, ¢ = 0.8147576,
N = 1024, A = 1/127, and SNR = lOlogao(A2/2a 2) =
50 dB.

S(w) = -_+O exp\ AS /]+<spurterm>

Leaving tile details to Appendix B, one can evaluate

Eq. (11):

where the <spur term> is a delta function with weight zero

or weight O(exp(-47r2a_/A2)), depending on whether or

not a spur was located at that frequency. These results
are consistent with those in [5].

With the exception of the A2/12 term, all the compo-

nents in the power spectrum in Eq. (10) are dependent on

the ratio _r/A. When this ratio is much greater than 1, the

resulting spectrum is essentially A_/12 and white. In this
manner, the input Gaussian noise has a dithering effect

on the spectrum. For other values of 0-/A, it is not im-

Y : E{]X[3N/16]I 2}=NQI+NQ2+NQ3+SQ (12)

where

A 2

Not- 12N (13)

and
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/ 2_2a 2 2k

167r2N E 12 cos +
m=0 l=l

NO3--

A2 £ [(£ (-1)'exp(. 21r2°'2A2 /2) sin (2,__ml))161r2N !
rn=o t=l

+ £ (-1)' exp C---_-T-! ) sin 27r _ _l
i

/=1

A2 t=_l

SQ = m
/r 2

/ 2_r2o-2 2\

t--T' J

(14)

J

with F(), era, and F_m as defined in Appendix C.

The quantities in Eq. (12) are easily computed. In fact,
for the $NRs of interest, only a small number of terms is re-

quired to adequately represent the infinite sums over I (see
Appendix D for more details). The spectral sample Y con-

sists of two types of components: a white-noise-floor term

and a spurious-harmonic term. As seen in Appendix B, the

values of NO,, NO_, and NO_ are independent of bin num-

ber (frequency), and thus represent a white-noise floor.
As a check, these quantities obey the 1/N (where N is the

number of points in the DFT) processing rule for white

noise in a DFT. The value S o represents the spurious har-
monic component of the spectral sample. This term is
independent of the DFT size N and is responsible for the

spectral sample becoming large when the SNR is high. In
effect, this limits the dynamic range of the digital spec-

trum analyzer.

Figures 6(a) and (b) show how the value of the spectral

sample changes as the SNR varies. The units are decibels

relative to the carrier (dBc). The following parameters
are held constant: A = 0.5, ¢ = 0.8147576, N = 1024,

and A = 1/127. The quantizer step size A was chosen
to simulate an 8-bit input quantizer (A _ 2-B+l where

B = 8). An experimental curve (simulation) is presented
with the theoretical curve to show the excellent agreement.

For each SNR used in the experiments, 10,000 spectra were
accumulated and rescaled.

The horizontal line in Fig. 6(a) indicates the value of

NO,. This would be the value of the spectral sample un-
der traditional quantization error assumptions [4]. Below

40 dB SNR (for the 8-bit input quantizer), the value of

the spectral sample Y reduces to essentially NO1. Above
70 dB SNR, the value of the spectral sample does not

change by more than a few decibels. The transition region

in Fig. 6(a) coincides with a/A approaching and exceeding
unity.

Figure 7 plots SO, the spurious harmonic portion of the

spectral sample, as a function of SNR. The units are deci-

bels relative to the carrier (dBc) with the same conditions
as above. When alA approaches unity, this value decays

exponentially on the log-log scale. From Eq. (14), one can

estimate the behavior of S o when _tA exceeds unity to
obtain a rule of thumb. Assume that the first term in

the infinite sum over l in Eq. (14) dominates, and bound

F( ) by its maximum value (from Appendix C, IF( )1 -< 1).

This provides a rough bound on the maximum value of S O.
In particular, compute SQdBc = lOloglo(2SQIA_). Recall

that SNR = 10 log lO(A2/2a2). After manipulating,

( 2A2
SqaB¢ = 101ogl0 t, _2A2 )

207r2 A 2

lnlO A 2 10-_-_R (15)

This expression is easily inverted to express the SNR as a

function of SOdBc. As seen in Fig. 7, the rule of thumb
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in Eq. (15) nicely describes the behavior of SQ even when
a/A is less than one. Asymptotically, Eq. (15) levels off

at high SNRs to a constant value, which is consistent with

empirical observations. This expression should prove use-
ful to system designers concerned with dynamic-range lim-

itations imposed by input quantization.

IV. Conclusions

Spurious harmonics pose complex filtering problems for

digital reception systems. These harmonies also limit the

dynamic range of digital spectrum analyzers. Expressions
have been obtained describing the spectrum of quantiza-

tion error when the input is a noisy sinusoid. An exam-

ple involving a DFT has provided quantitative information

about the behavior of spurious harmonics in the frequency

domain as a function of the SNR. The input Gaussian noise
dithers the output spectrum when the ratio _r/A exceeds

1, where cr2 is the noise variance, and A is the step size

in the input quantizer. A useful rule of thumb has been

derived that roughly bounds the magnitude of a spurious
harmonic as a function of the SNR.
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Appendix A

Derivation of the Power Spectrum

From Eq. (4), first consider r = 0:

R,(t, 0 -
A2 (_l)t+k

k#o t#o

xexp(_(l+k)sin(wot+¢))

A2 00

R,(t,t)=
1=-oo

t#0

_+_ (-1)"
rr]------ oo

xexp j2 msin(w0t+¢ l(1-m)

_#o
l#rn

Noting that the sum involving 1/12 evaluates to r2/3 [7]

and (after partial fraction manipulation) that the sum in-

volving 1/l(l - m) evaluates to 2/m 2, one can write

Using the characteristic function of a zero-mean Gaus-

sian random variable z with variance a 2, it is known that

E{exp(jaz)} = exp(c_/2a 2) [6]. Therefore,

R, (t, t) = - --A_ _ _--_ (-1) I+_
47r 2 lk

k=-oo l=-vo
t#o t#o

x exp (_"A-(l + k)sin(wot + ¢))

2_r2°'2 (1 + k) 2)x exp A2

A 2

rr&---_-- O0

rn#O

(-1)m exp (_sin(wot + ¢))

21r2a2 )x exp • A2 m2

Now consider r # 0:

R.(t, t + .) =

m 2

(A-I)

Changing indices so that I + k = m and translating the

condition k # 0 into m # i, one obtains

R,(t,t) =

A2 _ oo4r_ E (-1)m
m------co l=--oo

m#0 I#0

x exp (j2_m sin(w0t + ¢))exp ,-_ ]

Separating the case when m = 0 and rearranging the order

of summation,

A 2

_ _ _ (-1)'+_-_
k=--00 1------¢_

_#o t#o

x exp (_A-[ksin(wot + f) + lsin(wor + ¢)])

Since the input noise is white, z(t) and z(t + r) are in-

dependent random variables (r # 0), and the expectation

of the product becomes the product of the expectations.

When one uses the same characteristic function method

detailed above,
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R_(t,t + r)-
A 2 (-1)I+ _

k_O Z_O

2_1"2 °'2 1xexp • A2 (I2+m 2)

x exp (_A-[k sin(w0t + ¢)

+ I sin(wot ÷ wor + ¢)]) (A-2)

As indicated in Eq. (5), to obtain the discrete-time au-

tocorrelation function R=[n, n+k], replace t with nT and r

with kT in Eqs. (A-l) and (A-2). The evaluation of Eq. (6)

involves changing the order of integration and summation
until only terms involving the phase ¢ are inside the in-

tegral. It is useful at this time to use the Jacobi-Anger

formula [7]:

fx}

p=--¢_

One can now evaluate

A2 A2
jL[O 1__+_ _ (-lyg

x exp (---_-_-, J _ 37
p_--CCl

1 / eJP¢d_

0

The integral above will be 1 when 2 = 0 and 0 otherwise.
Noting that the resulting expression inside the above sum

is an even function of I, one obtains the first half of Eq. (7).

In evaluating _=[k] when k ¢ 0, one again employs the

Jacobi-Anger formula and interchanges the order of sum-

mation and integration so that the appropriate terms from

Eq. (A-2) are inside the integral. Using the orthogonality

of exponentials and noting that Jp(z) = (-1)PJ_p(z), one
obtains

A 2

_:[k] = - _ (-1) p exp(-j_0Tk)_
p=-oo

× ('_;r_ (-1)'Jpl (2..__41')

Consider the sum over I. When p is even, this sum will

be zero since Jp(x) = (-1)PJp(-z). When p is odd, the
sum over 1 is an even function of l, and one can reduce the

double-sided infinite sum to a single-sided infinite sum. By

changing the index from p to -n, one obtains the second

half of Eq. (7).

In evMuating Eq. (9), one can write

OQ

= +
k_oo

Note that the first term, _[0], is independent of the fre-

quency, w. Using the notation in Eq. (7),

= do]

+ _ <9. exp(jno_0Tk) exp(j_Tk)
/_='oo .-oo

n odd

oo

n odd

Note that the third term above is independent of fre-

quency. Writing out the expression for _ [0], one arrives

at Eq. (10) after noting

OO OO

k---co k=-oo

(A-3)

where 6 ( ) is the Dirac delta function.
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Appendix B

Derivation of the DFT Problem

From Eq. (11), one can write

y = E{IX[k]I 2}

1 N-1

= -- _ E{x[.]x[.]}
N 2

n----0

1

n----0 r=0

r#n

(B-l)

Consider the first term above. Note that it is independent

of the bin number k (i.e., independent of frequency). Re-

calling the results of Eqs. (5) and (A-l), rearranging the

order of summation, and using the Jacobi-Anger formula
leaves one with

_x_ k (-1)=NQ= = 2_r=N m=
re=mOO

rn#0

27r2 o._ ) oox exp A= m= E

The sum over p above is evaluated in Appendix C. Insert-

ing the result of Appendix C, interchanging the order of
summations, and using Euler's rule yields the second part

of Eq. (13).

' Now return to the second part of Eq. (B-I):

1W = _-g E E E{x[n]x[r]}exp
n=0 r=0

r#n

1 Nmt A2

N"-g E R,(nT, nT)= 1-_
n--0

1
= _ E E Re(nT, rT-nT)exp

n=0 r=0

r#n

___x= _ (-1)"
27r2N m 2

r?l _-- OO

m#O

where R,( ) is defined in Eq. (A-2). Evaluating this fur-
ther,

p------_

N-!

I e_L2__

n_-.O

Recall that woT = 7r/8 and k = 3N/16 in this example.
The sum over n is nonzero only when p = 0 rood 16. So,

1 N-1

N"'T E R,(nT, nT)= NQ, + NQ,
n=O

where NQ, = A2/12N, and

W--

E (-1)'+m 2r=a=,=-= _=-_ _ -exp _ (:_+ _)
I#o m#0

N-IN-1 I _

i j .4
E E exp --[isin(woTn+¢)
n=0 r=0

N 2 E exp sin (w0Tn + ¢)
n=0 A
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Note that the second term inside the big brackets is in-

dependent of the bin number k. Further separating the
terms inside the big brackets, one can write

W = SQ + NQ3 (B-2)

Consider the NOs term (this is the term independent of

k). Employing the Jacobi-Anger formula and evaluating
the sum over n as before,

NQ3

4_r2NE E lm
I_---00 rrt--.--oo

t#o m#o

x _ Ji6k (t+m) d 16.k

The results of Appendix C can be used to evaluate the

infinite sum over k. Again, after manipulating the defini-

tion of F( ) in Appendix C as detailed above, one finally
obtains the third part of Eq. (13).

Finally, consider S o from Eq. (B-2):

So -- A2 oo47r2 E
1-------- _ rrt cx3

:#o m#0

(-I)l÷m

_m

2_r2_2 )xexp A2 (/2.fro 2)

X [1_'_ E exp [i sin(woTn + ¢)
n----O r.._0

+ msin(w0Tr + ¢)] exp _,

Call the sum in the big brackets V, and employ the Jacobi-

Anger formula. Using the values of w0T and k from Sec-

tion III, and assuming that N is a power of 2 (N _> 16),
the value of V reduces to

V=(p=__J3+16r --

Since J,(x) = (-1)nJn(-x) and 4-3 + 16p is odd, one

can change the double-sided infinite sums to single-sided
infinite sums. By changing the index on q to -q, recall-

ing that J_,,(x) = (-1)"Jn(x), and using the formula in

Appendix C, one gets Eq. (14).
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Appendix C

Evaluating an Infinite Bessel Sum

Define

oo

F(x,y,z,t)= Z eJX1*J_+'k(t)
k-_ - oo

where x and y are integers and z _ 0. Using the integral

definition of the Bessel function of integer order [7!,

F(x, y, z, t) -

E ei_k j(-y+,k) cos(y0 + zkO)ePco'(°)dO

k---co 0

After changing the order of integration and summation,

one can apply Euler's rule to express co6( ) in terms of

complex exponentials. Next, equate the infinite sums of
complex exponentials to infinite sums of Dirac delta func-

tions as in Eq. (A-3). Only a finite number of delta func-

tions will remain inside the limits of integration. Note that

the remainder of this analysis assumes (for simplicity) that
no delta functions lie on the limits of integration. For the

DFT example in this article, this condition is satisfied.

Using the sifting and scaling properties of delta functions,

one finally obtains

F(z,y,z,t) =

m----0

where

x
em _ m_

2 z ¼] )-t-m - +m
z

71"

_.,=_+----

and em= cos(Ore) and E,,, = cos(_,_).
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Appendix D

Truncating an Infinite Sum

This appendix considers bounds on the error introduced

by truncating the following infinite sum:

® e-_212 F(I)
z = __ a l----g---

l=l

e-_'_2F(0 + _ e-_'" F(0= _
l=l /=L+I

= 5: + error

where n >_ 1 and IF(t)I < 1. The error can be bounded as
follows:

oo e_a_l_ oo

lerrorl <_ __, I----z-IF(01_< _ exp(-a212)
I=L+I I=L+I

Let a2 = 1/2tr2. Then,

I=L+I

The above sum can be visualized as the integral from

z = L to z = _ of a discontinuous step-like function

whose value is constant over the interval between two ad-

jacent integers. The value over an interval is equal to the
Gaussian density evaluated at the right-most portion of

the interval. A little thought will show that this integral

is strictly less than the integral of a Gaussian distribution

from z = L to z = c¢. Therefore,

erfc(otL)lerrorl <

where erfc( ) is the complementary function defined in [7].
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